服務熱線
0519-81660866
簡要描述:
南京氨氮廢水處理裝置 全自動工業(yè)含氟廢水濃度往往高于500mg/L,難以通過降低反應過飽和度保證反應器穩(wěn)定運行應用優勢,導致流化床結晶除氟的應用受限關註點。目前配套設備,流化床反應器處理高濃度含氟廢水的研究報道較為少見生產製造。
品牌 | 其他品牌 | 加工定制 | 是 |
---|---|---|---|
處理量 | 1-10000m3/h | 主體材質 | 碳鋼 |
水泵功率 | 3.5-30kw | 額定電壓 | 220v |
南京氨氮廢水處理裝置 全自動
含氟廢水主要來源于氟化工追求卓越、鋁電解發展機遇、鋼鐵制造、半導體等行業(yè)的生產(chǎn)過程性能。水體中氟的超標排放對人體和動植物都會造成嚴重危害。目前,高濃度含氟廢水的處理方法主要包括化學沉淀法強化意識、絮凝沉淀法等聽得進,沉淀產(chǎn)生的污泥含水率高,品質低合理需求,難以回用全技術方案。考慮到螢石等氟資源的緊缺性和重要性先進水平,研究人員基于誘導結晶的思路開發(fā)出了各種型式的流化床反應器重要的,將廢水中的氟以氟化鈣的形式回收。
流化床結晶法處理含氟廢水的主要影響因素包括反應pH搶抓機遇、反應過飽和度、晶種粒徑、上升流速等重要作用。當廢水中氟濃度低于150mg/L時堅持先行,反應過飽和度較低,有利于氟化鈣的誘導結晶回收增幅最大。然而具體而言,工業(yè)含氟廢水濃度往往高于500mg/L,難以通過降低反應過飽和度保證反應器穩(wěn)定運行滿意度,導致流化床結晶除氟的應用受限奮戰不懈。目前,流化床反應器處理高濃度含氟廢水的研究報道較為少見智慧與合力。
在前期工作中規定,筆者所在課題組設計了一種流化床結晶反應器,用于氟化工行業(yè)高濃度含氟廢水的處理措施,系統(tǒng)研究了高過飽和度下流化床結晶除氟的可行性以及氟化鈣結晶的動力學示範推廣。
本工作的主要目的是進一步確定該流化床除氟的效率和穩(wěn)定性。以高濃度模擬含氟廢水為處理對象,采用自制小試規(guī)模的流化床反應器大大縮短,考察了連續(xù)運行過程中廢水氟濃度、廢水流量、反應pH高質量、上升流速構建、鈣與氟的摩爾比(記為Ca/F)等因素對流化床不同高度出水口氟濃度的影響,為反應器的設計和優(yōu)化提供依據(jù)大幅增加。
1平臺建設、實驗部分
1.1 試劑和材料
廢水:由氟化鈉或氫氟酸與自來水配制而成。沉淀劑:由氯化鈣或氫氧化鈣與自來水配制探討。晶種:氟化鈣顆粒新技術,粒徑范圍200~400目。調節(jié)反應pH的藥劑為氫氧化鈉共創美好。實驗所用試劑均為分析純趨勢。
1.2 反應裝置
流化床反應器示意圖見圖1。
反應器主要由結晶反應區(qū)和澄清區(qū)構成預判,廢水與沉淀劑從反應器底部徑向進入。其中:結晶反應區(qū)直徑為50mm,高度為800mm應用領域;澄清區(qū)直徑為100mm創新為先,高度為750mm。出水口1~4距廢水入口的垂直距離分別為100mm統籌推進、500mm行業內卷、895mm和1470mm。
1.3 實驗流程
預先向反應器中加入250g晶種及自來水科普活動,運行過程中同時開啟廢水泵凝聚力量、沉淀劑泵、回流泵逐漸完善,通過U型壓力計監(jiān)測流化床床層壓力差變化,保證晶種處于流態(tài)化。調節(jié)回流流量以改變上升流速了解情況,向沉淀劑中加入氫氧化鈉以調節(jié)反應pH參與能力,間隔一定時間分別從反應器出水口1~4取樣。取樣后離心分離前的水樣為出水原液長期間,離心分離后的上清液為出水清液新的力量。分別測定出水原液及清液的pH后將水樣快速稀釋(以防止繼續(xù)沉淀),測定氟濃度是目前主流。
沉淀反應時間(t說服力,s)是指廢水與沉淀劑在流化床中混合接觸的時間,不同高度出水口的水樣更多可能性,其對應的沉淀反應時間不同,計算公式如下:
式中:L為出水口與廢水入口的垂直距離,mm分析;F為廢水流量至關重要、沉淀劑流量和回流流量之和,mm3/s;S為流化床截面積表示,mm2。
2緊迫性、結果與討論
2.1 流化床除氟的效率分析
處理對象為氟化鈉廢水質生產力,沉淀劑為氯化鈣溶液,沉淀劑鈣濃度為0.018~0.050mol/L非常激烈√嵘袆?;A實驗條件為:廢水氟質量濃度900mg/L,廢水流量17L/h喜愛,沉淀劑流量25L/h環境,回流流量0L/h(上升流速0.0059m/s),Ca/F1.00保障,反應pH7.0重要的角色。以此條件為基礎,分別改變廢水氟濃度體製、廢水流量要落實好、反應pH、上升流速(調節(jié)回流流量)向好態勢、Ca/F相對簡便,測得流化床運行時間為6h時各出水口的清液氟濃度,流化床運行過程越來越重要的位置,在改變各操作條件的情況下問題分析,各出水口間出水清液氟濃度的標準偏差均較小,可以認為各出水口出水清液的氟濃度基本相當解決方案。說明流化床底部進水到達出水口1時不負眾望,廢水與沉淀劑的沉淀反應已基本完成,根據(jù)式(1)計算得到出水口1的沉淀反應時間為30.7s交流研討,說明氟化鈣的沉淀反應在30.7s內即可完成推動並實現,氟離子可被快速去除。沉淀反應時間的確定順滑地配合,可以為流化床反應器中反應區(qū)的設計和優(yōu)化提供參考更加完善。
由表1還可見,在廢水氟質量濃度為500~1400mg/L上高質量、廢水流量為11~23L/h精準調控、反應pH為7.0~9.0效高、上升流速為0.0059~0.0130m/s、Ca/F為0.85~1.00的條件下優化程度,流化床除氟效率較高廣度和深度,出水清液氟濃度基本保持在10mg/L以下,達到《污水綜合排放標準》(GB8978—1996)中排放限值的要求基礎。
對出水口4的清液與原液氟濃度進行了對比日漸深入,如圖2所示,可見各組實驗中出水原液的氟濃度均顯著高于出水清液引領作用,這可能由于出水濁度的增大(細小顆粒沉淀物增多)造成的強化意識。
采用日本電子JSM6360型掃描電子顯微鏡對出水口4原液中的沉淀物(實驗序號2)進行了分析,如圖3所示深入,溢出的沉淀物基本是粒徑小于2μm的細小顆粒合理需求。細顆粒的帶出速率小于流化床的上升流速,因而隨水流從流化床中溢出進展情況,造成出水濁度增大重要的作用。同時,細顆粒氟化鈣的溶解度較大研究,導致出水氟濃度增大搶抓機遇。要保證出水氟濃度達到排放要求,應盡量消除其中的細顆粒沉淀物去創新。在反應器的設計和運行過程中結論,可以通過適當擴大流化床上部澄清區(qū)的直徑、增大流化床回流流量(降低反應過飽和度)體系、增加流化床中晶種的固含量來減少細顆粒沉淀物的產(chǎn)生或溢出足夠的實力,保證流化床沉淀除氟的效率。
2.2 流化床除氟的穩(wěn)定性分析
處理對象為氟化鈉廢水提高,沉淀劑為氯化鈣溶液全面闡釋,基礎實驗條件參照2.1節(jié)。出水清液氟濃度隨運行時間的變化結構,體現(xiàn)了流化床沉淀除氟效果的穩(wěn)定性適應性強。改變廢水氟濃度、廢水流量競爭力所在、反應pH能力建設、上升流速、Ca/F先進的解決方案,測得不同運行時間時出水口4的清液氟濃度基礎,如表2所示。由表2可見研究進展,Ca/F>0.65時要素配置改革,隨著運行時間的增加,出水清液氟濃度基本可以控制在10mg/L以下,其他操作條件對出水清液氟濃度的影響不大設計標準。
2.3 流化床除氟的模擬應用
通過分析湖南湘鄉(xiāng)某氟化工廠排放的含氟廢水發(fā)現(xiàn)深度,廢水中氟濃度高達上千mg/L,廢水pH在2~3經驗分享。為了模擬小試流化床反應器對該氟化工廢水的處理效果,用氫氟酸配制了氟質量濃度為1000mg/L的廢水新技術,以氫氧化鈣懸濁液為沉淀劑培養。控制沉淀劑鈣濃度為0.036mol/L趨勢、廢水流量為17L/h高效流通、沉淀劑流量為25L/h、Ca/F=1.00、反應pH在6.5~9.3有力扭轉,進行了連續(xù)除氟實驗,結果如圖4所示深入。盡管出水原液氟質量濃度在24~82mg/L間波動形式,出水清液氟質量濃度仍然可以保持在10mg/L左右。上述實驗結果表明一站式服務,只要能采取有效措施減少細顆粒沉淀物的產(chǎn)生或溢出功能,流化床在連續(xù)運行過程中的沉淀除氟效果可以保持穩(wěn)定,操作范圍較廣支撐作用,有利于控制管理積極性。
南京氨氮廢水處理裝置 全自動
3、結論
a)采用小試規(guī)模的流化床反應器處理氟質量濃度為500~1400mg/L的模擬含氟廢水解決,以氯化鈣溶液為沉淀劑(流量25L/h)性能,廢水中的氟離子在30.7s內即可被快速去除。在廢水流量為11~23L/h不斷豐富、反應pH為7.0~9.0方案、上升流速為0.0059~0.0130m/s、Ca/F為0.85~1.00的條件下大力發展,流化床沉淀除氟運行高效穩(wěn)定約定管轄,出水清液氟質量濃度低于10mg/L,達到GB8978—1996要求集成技術。
b)流化床出水中的細顆粒沉淀物導致氟濃度顯著升高新創新即將到來。在流化床的設計和運行中,可以采取增大流化床澄清區(qū)的直徑創新的技術、調節(jié)流化床回流流量設計能力、增加流化床中晶種固含量等措施更合理,盡可能減少細顆粒沉淀物的產(chǎn)生或溢出,以保證流化床的沉淀除氟效果質量。
聯(lián)系方式
郵件:3145672861@qq.com